MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. S15500 Stainless Steel

Both AISI 201L stainless steel and S15500 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 320
290 to 430
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 22 to 46
6.8 to 16
Fatigue Strength, MPa 270 to 530
350 to 650
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 520 to 660
540 to 870
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
890 to 1490
Tensile Strength: Yield (Proof), MPa 290 to 790
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 410
440
Maximum Temperature: Mechanical, °C 880
820
Melting Completion (Liquidus), °C 1410
1430
Melting Onset (Solidus), °C 1370
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 38
39
Embodied Water, L/kg 140
130

Common Calculations

PREN (Pitting Resistance) 19
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
890 to 4460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27 to 37
32 to 53
Strength to Weight: Bending, points 24 to 30
26 to 37
Thermal Diffusivity, mm2/s 4.0
4.6
Thermal Shock Resistance, points 16 to 23
30 to 50

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 16 to 18
14 to 15.5
Copper (Cu), % 0
2.5 to 4.5
Iron (Fe), % 67.9 to 75
71.9 to 79.9
Manganese (Mn), % 5.5 to 7.5
0 to 1.0
Nickel (Ni), % 3.5 to 5.5
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030