MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. EN AC-51500 Aluminum

AISI 202 stainless steel belongs to the iron alloys classification, while EN AC-51500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
80
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 14 to 45
5.6
Fatigue Strength, MPa 290 to 330
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 700 to 980
280
Tensile Strength: Yield (Proof), MPa 310 to 580
160

Thermal Properties

Latent Heat of Fusion, J/g 290
430
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1400
630
Melting Onset (Solidus), °C 1360
590
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
88

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.8
9.0
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
13
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 25 to 35
29
Strength to Weight: Bending, points 23 to 29
36
Thermal Diffusivity, mm2/s 4.0
49
Thermal Shock Resistance, points 15 to 21
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
89.8 to 93.1
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 63.5 to 71.5
0 to 0.25
Magnesium (Mg), % 0
4.7 to 6.0
Manganese (Mn), % 7.5 to 10
0.4 to 0.8
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
1.8 to 2.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15