MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. Grade 14 Titanium

AISI 202 stainless steel belongs to the iron alloys classification, while grade 14 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is grade 14 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 45
23
Fatigue Strength, MPa 290 to 330
220
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 490 to 590
290
Tensile Strength: Ultimate (UTS), MPa 700 to 980
460
Tensile Strength: Yield (Proof), MPa 310 to 580
310

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 910
320
Melting Completion (Liquidus), °C 1400
1660
Melting Onset (Solidus), °C 1360
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
32
Embodied Energy, MJ/kg 40
520
Embodied Water, L/kg 150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
93
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25 to 35
28
Strength to Weight: Bending, points 23 to 29
29
Thermal Diffusivity, mm2/s 4.0
8.5
Thermal Shock Resistance, points 15 to 21
35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 17 to 19
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 63.5 to 71.5
0 to 0.3
Manganese (Mn), % 7.5 to 10
0
Nickel (Ni), % 4.0 to 6.0
0.4 to 0.6
Nitrogen (N), % 0 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.060
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.4 to 99.56
Residuals, % 0
0 to 0.4