MakeItFrom.com
Menu (ESC)

AISI 204 Stainless Steel vs. C22600 Bronze

AISI 204 stainless steel belongs to the iron alloys classification, while C22600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 204 stainless steel and the bottom bar is C22600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23 to 39
2.5 to 33
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 500 to 700
220 to 320
Tensile Strength: Ultimate (UTS), MPa 730 to 1100
330 to 570
Tensile Strength: Yield (Proof), MPa 380 to 1080
270 to 490

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 850
170
Melting Completion (Liquidus), °C 1410
1040
Melting Onset (Solidus), °C 1370
1000
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
170
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
42

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.4
2.6
Embodied Energy, MJ/kg 35
42
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240 to 250
14 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 2940
330 to 1070
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27 to 40
11 to 18
Strength to Weight: Bending, points 24 to 31
12 to 18
Thermal Diffusivity, mm2/s 4.1
52
Thermal Shock Resistance, points 16 to 24
11 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 69.6 to 76.4
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 7.0 to 9.0
0
Nickel (Ni), % 1.5 to 3.0
0
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
10.7 to 14
Residuals, % 0
0 to 0.2