MakeItFrom.com
Menu (ESC)

AISI 205 Stainless Steel vs. AWS ER110S-1

Both AISI 205 stainless steel and AWS ER110S-1 are iron alloys. They have 69% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AISI 205 stainless steel and the bottom bar is AWS ER110S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11 to 51
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 800 to 1430
870
Tensile Strength: Yield (Proof), MPa 450 to 1100
740

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
4.0
Density, g/cm3 7.6
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 37
25
Embodied Water, L/kg 150
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 430
140
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 3060
1460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 29 to 52
31
Strength to Weight: Bending, points 25 to 37
26
Thermal Shock Resistance, points 16 to 29
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.12 to 0.25
0 to 0.090
Chromium (Cr), % 16.5 to 18.5
0 to 0.5
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 62.6 to 68.1
92.8 to 96.3
Manganese (Mn), % 14 to 15.5
1.4 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 1.0 to 1.7
1.9 to 2.6
Nitrogen (N), % 0.32 to 0.4
0
Phosphorus (P), % 0 to 0.060
0 to 0.010
Silicon (Si), % 0 to 1.0
0.2 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.040
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5