MakeItFrom.com
Menu (ESC)

AISI 301L Stainless Steel vs. Grade Ti-Pd8A Titanium

AISI 301L stainless steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 301L stainless steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 320
200
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22 to 50
13
Fatigue Strength, MPa 240 to 530
260
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 620 to 1040
500
Tensile Strength: Yield (Proof), MPa 250 to 790
430

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 890
320
Melting Completion (Liquidus), °C 1430
1660
Melting Onset (Solidus), °C 1390
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.7
49
Embodied Energy, MJ/kg 39
840
Embodied Water, L/kg 130
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
65
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1580
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22 to 37
31
Strength to Weight: Bending, points 21 to 29
31
Thermal Diffusivity, mm2/s 4.1
8.6
Thermal Shock Resistance, points 14 to 24
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 70.7 to 78
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 6.0 to 8.0
0 to 0.050
Nitrogen (N), % 0 to 0.2
0
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4