AISI 301LN Stainless Steel vs. EN 1.4864 Stainless Steel
Both AISI 301LN stainless steel and EN 1.4864 stainless steel are iron alloys. They have 71% of their average alloy composition in common.
For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is EN 1.4864 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
| Brinell Hardness | 210 to 320 | |
| 190 |
| Elastic (Young's, Tensile) Modulus, GPa | 200 | |
| 190 |
| Elongation at Break, % | 23 to 51 | |
| 33 |
| Fatigue Strength, MPa | 270 to 520 | |
| 200 |
| Poisson's Ratio | 0.28 | |
| 0.29 |
| Shear Modulus, GPa | 77 | |
| 75 |
| Shear Strength, MPa | 450 to 670 | |
| 430 |
| Tensile Strength: Ultimate (UTS), MPa | 630 to 1060 | |
| 650 |
| Tensile Strength: Yield (Proof), MPa | 270 to 770 | |
| 260 |
Thermal Properties
| Latent Heat of Fusion, J/g | 280 | |
| 310 |
| Maximum Temperature: Corrosion, °C | 410 | |
| 410 |
| Maximum Temperature: Mechanical, °C | 890 | |
| 1100 |
| Melting Completion (Liquidus), °C | 1430 | |
| 1390 |
| Melting Onset (Solidus), °C | 1380 | |
| 1340 |
| Specific Heat Capacity, J/kg-K | 480 | |
| 480 |
| Thermal Conductivity, W/m-K | 15 | |
| 13 |
| Thermal Expansion, µm/m-K | 16 | |
| 14 |
Electrical Properties
| Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
| 1.7 |
| Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
| 1.9 |
Otherwise Unclassified Properties
| Base Metal Price, % relative | 13 | |
| 30 |
| Density, g/cm3 | 7.8 | |
| 8.0 |
| Embodied Carbon, kg CO2/kg material | 2.7 | |
| 5.3 |
| Embodied Energy, MJ/kg | 39 | |
| 75 |
| Embodied Water, L/kg | 130 | |
| 180 |
Common Calculations
| PREN (Pitting Resistance) | 19 | |
| 17 |
| Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 220 to 290 | |
| 170 |
| Resilience: Unit (Modulus of Resilience), kJ/m3 | 180 to 1520 | |
| 170 |
| Stiffness to Weight: Axial, points | 14 | |
| 13 |
| Stiffness to Weight: Bending, points | 25 | |
| 24 |
| Strength to Weight: Axial, points | 22 to 38 | |
| 23 |
| Strength to Weight: Bending, points | 21 to 30 | |
| 21 |
| Thermal Diffusivity, mm2/s | 4.0 | |
| 3.3 |
| Thermal Shock Resistance, points | 14 to 24 | |
| 17 |
Alloy Composition
| Carbon (C), % | 0 to 0.030 | |
| 0 to 0.15 |
| Chromium (Cr), % | 16 to 18 | |
| 15 to 17 |
| Iron (Fe), % | 70.7 to 77.9 | |
| 41.7 to 51 |
| Manganese (Mn), % | 0 to 2.0 | |
| 0 to 2.0 |
| Nickel (Ni), % | 6.0 to 8.0 | |
| 33 to 37 |
| Nitrogen (N), % | 0.070 to 0.2 | |
| 0 to 0.1 |
| Phosphorus (P), % | 0 to 0.045 | |
| 0 to 0.045 |
| Silicon (Si), % | 0 to 1.0 | |
| 1.0 to 2.0 |
| Sulfur (S), % | 0 to 0.030 | |
| 0 to 0.015 |