MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. Grade 34 Titanium

AISI 301LN stainless steel belongs to the iron alloys classification, while grade 34 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is grade 34 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23 to 51
20
Fatigue Strength, MPa 270 to 520
310
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 450 to 670
320
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
510
Tensile Strength: Yield (Proof), MPa 270 to 770
450

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 890
320
Melting Completion (Liquidus), °C 1430
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
55
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.7
33
Embodied Energy, MJ/kg 39
530
Embodied Water, L/kg 130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
100
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
960
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22 to 38
31
Strength to Weight: Bending, points 21 to 30
31
Thermal Diffusivity, mm2/s 4.0
8.4
Thermal Shock Resistance, points 14 to 24
39

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 16 to 18
0.1 to 0.2
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 70.7 to 77.9
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 6.0 to 8.0
0.35 to 0.55
Nitrogen (N), % 0.070 to 0.2
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.010 to 0.020
Phosphorus (P), % 0 to 0.045
0
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98 to 99.52
Residuals, % 0
0 to 0.4