MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. C68000 Brass

AISI 301LN stainless steel belongs to the iron alloys classification, while C68000 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is C68000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 23 to 51
27
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
390
Tensile Strength: Yield (Proof), MPa 270 to 770
140

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 890
120
Melting Completion (Liquidus), °C 1430
880
Melting Onset (Solidus), °C 1380
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
96
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 39
48
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
82
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
95
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22 to 38
14
Strength to Weight: Bending, points 21 to 30
15
Thermal Diffusivity, mm2/s 4.0
31
Thermal Shock Resistance, points 14 to 24
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
56 to 60
Iron (Fe), % 70.7 to 77.9
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0.010 to 0.5
Nickel (Ni), % 6.0 to 8.0
0.2 to 0.8
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.040 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.75 to 1.1
Zinc (Zn), % 0
35.6 to 42.8
Residuals, % 0
0 to 0.5