MakeItFrom.com
Menu (ESC)

AISI 302 Stainless Steel vs. 2036 Aluminum

AISI 302 stainless steel belongs to the iron alloys classification, while 2036 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 302 stainless steel and the bottom bar is 2036 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 4.5 to 46
24
Fatigue Strength, MPa 210 to 520
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 400 to 830
210
Tensile Strength: Ultimate (UTS), MPa 580 to 1430
340
Tensile Strength: Yield (Proof), MPa 230 to 1100
200

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 710
190
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1400
560
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
130

Otherwise Unclassified Properties

Base Metal Price, % relative 15
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 3.0
8.1
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 140
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 260
70
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 3070
270
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 21 to 51
33
Strength to Weight: Bending, points 20 to 36
38
Thermal Diffusivity, mm2/s 4.4
62
Thermal Shock Resistance, points 12 to 31
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.4 to 97.4
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0 to 0.1
Copper (Cu), % 0
2.2 to 3.0
Iron (Fe), % 67.9 to 75
0 to 0.5
Magnesium (Mg), % 0
0.3 to 0.6
Manganese (Mn), % 0 to 2.0
0.1 to 0.4
Nickel (Ni), % 8.0 to 10
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15