MakeItFrom.com
Menu (ESC)

AISI 302 Stainless Steel vs. EN 1.8818 Steel

Both AISI 302 stainless steel and EN 1.8818 steel are iron alloys. They have 73% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 302 stainless steel and the bottom bar is EN 1.8818 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 440
130
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 4.5 to 46
27
Fatigue Strength, MPa 210 to 520
200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 400 to 830
280
Tensile Strength: Ultimate (UTS), MPa 580 to 1430
440
Tensile Strength: Yield (Proof), MPa 230 to 1100
270

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 710
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
48
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.6
Embodied Energy, MJ/kg 42
21
Embodied Water, L/kg 140
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 260
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 3070
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 51
16
Strength to Weight: Bending, points 20 to 36
16
Thermal Diffusivity, mm2/s 4.4
13
Thermal Shock Resistance, points 12 to 31
13

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.034
Carbon (C), % 0 to 0.15
0 to 0.15
Chromium (Cr), % 17 to 19
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 67.9 to 75
95.9 to 99.985
Manganese (Mn), % 0 to 2.0
0 to 1.6
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 8.0 to 10
0 to 0.35
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0 to 0.1
0 to 0.017
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.1