MakeItFrom.com
Menu (ESC)

AISI 302 Stainless Steel vs. C62400 Bronze

AISI 302 stainless steel belongs to the iron alloys classification, while C62400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 302 stainless steel and the bottom bar is C62400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 4.5 to 46
11 to 14
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Shear Strength, MPa 400 to 830
420 to 440
Tensile Strength: Ultimate (UTS), MPa 580 to 1430
690 to 730
Tensile Strength: Yield (Proof), MPa 230 to 1100
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 710
220
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 16
59
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
13

Otherwise Unclassified Properties

Base Metal Price, % relative 15
27
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.0
3.2
Embodied Energy, MJ/kg 42
53
Embodied Water, L/kg 140
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 260
68 to 77
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 3070
320 to 550
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 51
23 to 25
Strength to Weight: Bending, points 20 to 36
21 to 22
Thermal Diffusivity, mm2/s 4.4
16
Thermal Shock Resistance, points 12 to 31
25 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
82.8 to 88
Iron (Fe), % 67.9 to 75
2.0 to 4.5
Manganese (Mn), % 0 to 2.0
0 to 0.3
Nickel (Ni), % 8.0 to 10
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5