MakeItFrom.com
Menu (ESC)

AISI 302 Stainless Steel vs. S17400 Stainless Steel

Both AISI 302 stainless steel and S17400 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 302 stainless steel and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 440
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 4.5 to 46
11 to 21
Fatigue Strength, MPa 210 to 520
380 to 670
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 400 to 830
570 to 830
Tensile Strength: Ultimate (UTS), MPa 580 to 1430
910 to 1390
Tensile Strength: Yield (Proof), MPa 230 to 1100
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 710
850
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
14
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 42
39
Embodied Water, L/kg 140
130

Common Calculations

PREN (Pitting Resistance) 19
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 260
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 3070
880 to 4060
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 51
32 to 49
Strength to Weight: Bending, points 20 to 36
27 to 35
Thermal Diffusivity, mm2/s 4.4
4.5
Thermal Shock Resistance, points 12 to 31
30 to 46

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.070
Chromium (Cr), % 17 to 19
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 67.9 to 75
70.4 to 78.9
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 8.0 to 10
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030