MakeItFrom.com
Menu (ESC)

AISI 302 Stainless Steel vs. S46800 Stainless Steel

Both AISI 302 stainless steel and S46800 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 302 stainless steel and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 440
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 4.5 to 46
25
Fatigue Strength, MPa 210 to 520
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 400 to 830
300
Tensile Strength: Ultimate (UTS), MPa 580 to 1430
470
Tensile Strength: Yield (Proof), MPa 230 to 1100
230

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
500
Maximum Temperature: Mechanical, °C 710
920
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
23
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 15
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 42
37
Embodied Water, L/kg 140
130

Common Calculations

PREN (Pitting Resistance) 19
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 260
98
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 3070
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 51
17
Strength to Weight: Bending, points 20 to 36
18
Thermal Diffusivity, mm2/s 4.4
6.1
Thermal Shock Resistance, points 12 to 31
16

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 17 to 19
18 to 20
Iron (Fe), % 67.9 to 75
76.5 to 81.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 8.0 to 10
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.070 to 0.3