MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. Grade 37 Titanium

AISI 304 stainless steel belongs to the iron alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.0 to 43
22
Fatigue Strength, MPa 210 to 440
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 400 to 690
240
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
390
Tensile Strength: Yield (Proof), MPa 230 to 860
250

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 710
310
Melting Completion (Liquidus), °C 1450
1650
Melting Onset (Solidus), °C 1400
1600
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 17
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 15
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.0
31
Embodied Energy, MJ/kg 43
500
Embodied Water, L/kg 150
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
76
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 42
24
Strength to Weight: Bending, points 20 to 32
26
Thermal Diffusivity, mm2/s 4.2
8.4
Thermal Shock Resistance, points 12 to 25
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
1.0 to 2.0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 18 to 20
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 66.5 to 74
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0
Nitrogen (N), % 0 to 0.1
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
96.9 to 99
Residuals, % 0
0 to 0.4