MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. C26000 Brass

AISI 304 stainless steel belongs to the iron alloys classification, while C26000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is C26000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.0 to 43
2.5 to 66
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Shear Strength, MPa 400 to 690
230 to 390
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
320 to 680
Tensile Strength: Yield (Proof), MPa 230 to 860
110 to 570

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 710
140
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1400
920
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
31

Otherwise Unclassified Properties

Base Metal Price, % relative 15
25
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 43
45
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
6.1 to 420
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
51 to 1490
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 42
11 to 23
Strength to Weight: Bending, points 20 to 32
13 to 21
Thermal Diffusivity, mm2/s 4.2
38
Thermal Shock Resistance, points 12 to 25
11 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Bismuth (Bi), % 0
0 to 0.0059
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
68.5 to 71.5
Iron (Fe), % 66.5 to 74
0 to 0.050
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
28.1 to 31.5
Residuals, % 0
0 to 0.3