MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. C92200 Bronze

AISI 304 stainless steel belongs to the iron alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.0 to 43
25
Fatigue Strength, MPa 210 to 440
76
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
280
Tensile Strength: Yield (Proof), MPa 230 to 860
140

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 710
170
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1400
830
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 16
70
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
14

Otherwise Unclassified Properties

Base Metal Price, % relative 15
32
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.0
3.2
Embodied Energy, MJ/kg 43
52
Embodied Water, L/kg 150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
58
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
87
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 42
8.9
Strength to Weight: Bending, points 20 to 32
11
Thermal Diffusivity, mm2/s 4.2
21
Thermal Shock Resistance, points 12 to 25
9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
86 to 90
Iron (Fe), % 66.5 to 74
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.7