MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. 7129 Aluminum

AISI 304L stainless steel belongs to the iron alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 6.7 to 46
9.0 to 9.1
Fatigue Strength, MPa 170 to 430
150 to 190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 370 to 680
250 to 260
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
430
Tensile Strength: Yield (Proof), MPa 190 to 870
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 540
180
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
510
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 16
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 3.1
8.3
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
1050 to 1090
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 19 to 41
41
Strength to Weight: Bending, points 19 to 31
43 to 44
Thermal Diffusivity, mm2/s 4.2
58
Thermal Shock Resistance, points 12 to 25
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91 to 94
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0 to 0.1
Copper (Cu), % 0
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 65 to 74
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 8.0 to 12
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15