MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. EN 1.4313 Stainless Steel

Both AISI 304L stainless steel and EN 1.4313 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 6.7 to 46
12 to 17
Fatigue Strength, MPa 170 to 430
340 to 510
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 370 to 680
460 to 600
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
750 to 1000
Tensile Strength: Yield (Proof), MPa 190 to 870
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 420
390
Maximum Temperature: Mechanical, °C 540
780
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 16
10
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.4
Embodied Energy, MJ/kg 44
34
Embodied Water, L/kg 150
110

Common Calculations

PREN (Pitting Resistance) 20
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
870 to 2100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 41
27 to 36
Strength to Weight: Bending, points 19 to 31
23 to 28
Thermal Diffusivity, mm2/s 4.2
6.7
Thermal Shock Resistance, points 12 to 25
27 to 36

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 18 to 20
12 to 14
Iron (Fe), % 65 to 74
78.5 to 84.2
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 8.0 to 12
3.5 to 4.5
Nitrogen (N), % 0 to 0.1
0 to 0.020
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.015

Comparable Variants