MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. C61800 Bronze

AISI 304L stainless steel belongs to the iron alloys classification, while C61800 bronze belongs to the copper alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.7 to 46
26
Fatigue Strength, MPa 170 to 430
190
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 79
89
Shear Modulus, GPa 77
44
Shear Strength, MPa 370 to 680
310
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
740
Tensile Strength: Yield (Proof), MPa 190 to 870
310

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 540
220
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 16
64
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
14

Otherwise Unclassified Properties

Base Metal Price, % relative 16
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.1
3.1
Embodied Energy, MJ/kg 44
52
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
150
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 41
25
Strength to Weight: Bending, points 19 to 31
22
Thermal Diffusivity, mm2/s 4.2
18
Thermal Shock Resistance, points 12 to 25
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
8.5 to 11
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
86.9 to 91
Iron (Fe), % 65 to 74
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 12
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.020
Residuals, % 0
0 to 0.5