MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. C68800 Brass

AISI 304L stainless steel belongs to the iron alloys classification, while C68800 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is C68800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.7 to 46
2.0 to 36
Poisson's Ratio 0.28
0.32
Rockwell B Hardness 79
81 to 99
Shear Modulus, GPa 77
41
Shear Strength, MPa 370 to 680
380 to 510
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
570 to 890
Tensile Strength: Yield (Proof), MPa 190 to 870
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 540
160
Melting Completion (Liquidus), °C 1450
960
Melting Onset (Solidus), °C 1400
950
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
18
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
20

Otherwise Unclassified Properties

Base Metal Price, % relative 16
26
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 44
48
Embodied Water, L/kg 150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
16 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
710 to 2860
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 41
19 to 30
Strength to Weight: Bending, points 19 to 31
19 to 25
Thermal Diffusivity, mm2/s 4.2
12
Thermal Shock Resistance, points 12 to 25
19 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
3.0 to 3.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Cobalt (Co), % 0
0.25 to 0.55
Copper (Cu), % 0
70.8 to 75.5
Iron (Fe), % 65 to 74
0 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 12
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
21.3 to 24.1
Residuals, % 0
0 to 0.5