MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. C69710 Brass

AISI 304L stainless steel belongs to the iron alloys classification, while C69710 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.7 to 46
25
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 370 to 680
300
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
470
Tensile Strength: Yield (Proof), MPa 190 to 870
230

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 540
160
Melting Completion (Liquidus), °C 1450
930
Melting Onset (Solidus), °C 1400
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
26
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 44
44
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
99
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
250
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 41
16
Strength to Weight: Bending, points 19 to 31
16
Thermal Diffusivity, mm2/s 4.2
12
Thermal Shock Resistance, points 12 to 25
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
75 to 80
Iron (Fe), % 65 to 74
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 2.0
0 to 0.4
Nickel (Ni), % 8.0 to 12
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
2.5 to 3.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
13.8 to 22
Residuals, % 0
0 to 0.5