MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. C84000 Brass

AISI 304L stainless steel belongs to the iron alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 350
65
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.7 to 46
27
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
250
Tensile Strength: Yield (Proof), MPa 190 to 870
140

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 540
170
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1400
940
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
72
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
17

Otherwise Unclassified Properties

Base Metal Price, % relative 16
30
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 3.1
3.0
Embodied Energy, MJ/kg 44
49
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
58
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 41
8.2
Strength to Weight: Bending, points 19 to 31
10
Thermal Diffusivity, mm2/s 4.2
22
Thermal Shock Resistance, points 12 to 25
9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
82 to 89
Iron (Fe), % 65 to 74
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Nickel (Ni), % 8.0 to 12
0.5 to 2.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7