MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. C97800 Nickel Silver

AISI 304L stainless steel belongs to the iron alloys classification, while C97800 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is C97800 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 6.7 to 46
10
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
48
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
370
Tensile Strength: Yield (Proof), MPa 190 to 870
170

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 540
230
Melting Completion (Liquidus), °C 1450
1180
Melting Onset (Solidus), °C 1400
1140
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
25
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 16
40
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.1
5.1
Embodied Energy, MJ/kg 44
76
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
31
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
120
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19 to 41
12
Strength to Weight: Bending, points 19 to 31
13
Thermal Diffusivity, mm2/s 4.2
7.3
Thermal Shock Resistance, points 12 to 25
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
64 to 67
Iron (Fe), % 65 to 74
0 to 1.5
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 12
24 to 27
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.0 to 5.5
Zinc (Zn), % 0
1.0 to 4.0
Residuals, % 0
0 to 0.4