MakeItFrom.com
Menu (ESC)

AISI 304L Stainless Steel vs. S45000 Stainless Steel

Both AISI 304L stainless steel and S45000 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 304L stainless steel and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 350
280 to 410
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 6.7 to 46
6.8 to 14
Fatigue Strength, MPa 170 to 430
330 to 650
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 370 to 680
590 to 830
Tensile Strength: Ultimate (UTS), MPa 540 to 1160
980 to 1410
Tensile Strength: Yield (Proof), MPa 190 to 870
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 420
400
Maximum Temperature: Mechanical, °C 540
840
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 44
39
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 20
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 240
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 1900
850 to 4400
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 41
35 to 50
Strength to Weight: Bending, points 19 to 31
28 to 36
Thermal Diffusivity, mm2/s 4.2
4.5
Thermal Shock Resistance, points 12 to 25
33 to 47

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 18 to 20
14 to 16
Copper (Cu), % 0
1.3 to 1.8
Iron (Fe), % 65 to 74
72.1 to 79.3
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 8.0 to 12
5.0 to 7.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030

Comparable Variants