MakeItFrom.com
Menu (ESC)

AISI 304LN Stainless Steel vs. EN 1.4418 Stainless Steel

Both AISI 304LN stainless steel and EN 1.4418 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is EN 1.4418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 7.8 to 46
16 to 20
Fatigue Strength, MPa 200 to 440
350 to 480
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 400 to 680
530 to 620
Tensile Strength: Ultimate (UTS), MPa 580 to 1160
860 to 1000
Tensile Strength: Yield (Proof), MPa 230 to 870
540 to 790

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 420
410
Maximum Temperature: Mechanical, °C 960
870
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 44
39
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 21
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 270
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1900
730 to 1590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 41
31 to 36
Strength to Weight: Bending, points 20 to 31
26 to 28
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 13 to 26
31 to 36

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.060
Chromium (Cr), % 18 to 20
15 to 17
Iron (Fe), % 65 to 73.9
73.2 to 80.2
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.5
Nickel (Ni), % 8.0 to 12
4.0 to 6.0
Nitrogen (N), % 0.1 to 0.16
0 to 0.020
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.015

Comparable Variants