MakeItFrom.com
Menu (ESC)

AISI 304LN Stainless Steel vs. C43500 Brass

AISI 304LN stainless steel belongs to the iron alloys classification, while C43500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 304LN stainless steel and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 7.8 to 46
8.5 to 46
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
42
Shear Strength, MPa 400 to 680
220 to 310
Tensile Strength: Ultimate (UTS), MPa 580 to 1160
320 to 530
Tensile Strength: Yield (Proof), MPa 230 to 870
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 960
160
Melting Completion (Liquidus), °C 1420
1000
Melting Onset (Solidus), °C 1380
970
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
30

Otherwise Unclassified Properties

Base Metal Price, % relative 16
28
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 270
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1900
65 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 41
10 to 17
Strength to Weight: Bending, points 20 to 31
12 to 17
Thermal Diffusivity, mm2/s 4.0
37
Thermal Shock Resistance, points 13 to 26
11 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
79 to 83
Iron (Fe), % 65 to 73.9
0 to 0.050
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 12
0
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.6 to 1.2
Zinc (Zn), % 0
15.4 to 20.4
Residuals, % 0
0 to 0.3