MakeItFrom.com
Menu (ESC)

AISI 304N Stainless Steel vs. Grade 3 Titanium

AISI 304N stainless steel belongs to the iron alloys classification, while grade 3 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 304N stainless steel and the bottom bar is grade 3 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 360
170
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.1 to 45
21
Fatigue Strength, MPa 220 to 440
300
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Shear Strength, MPa 420 to 700
320
Tensile Strength: Ultimate (UTS), MPa 620 to 1180
510
Tensile Strength: Yield (Proof), MPa 270 to 850
440

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 960
320
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 16
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.0
31
Embodied Energy, MJ/kg 43
510
Embodied Water, L/kg 150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 280
100
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1830
910
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22 to 42
32
Strength to Weight: Bending, points 21 to 32
32
Thermal Diffusivity, mm2/s 4.2
8.6
Thermal Shock Resistance, points 14 to 26
37

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 18 to 20
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 66.4 to 73.9
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0
Nitrogen (N), % 0.1 to 0.16
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4