MakeItFrom.com
Menu (ESC)

AISI 305 Stainless Steel vs. C62300 Bronze

AISI 305 stainless steel belongs to the iron alloys classification, while C62300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 305 stainless steel and the bottom bar is C62300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 45
18 to 32
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 400 to 470
360 to 390
Tensile Strength: Ultimate (UTS), MPa 580 to 710
570 to 630
Tensile Strength: Yield (Proof), MPa 230 to 350
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 540
220
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 16
54
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
13

Otherwise Unclassified Properties

Base Metal Price, % relative 16
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.2
3.1
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 210
95 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 320
240 to 430
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20 to 25
19 to 21
Strength to Weight: Bending, points 20 to 23
18 to 20
Thermal Diffusivity, mm2/s 4.2
15
Thermal Shock Resistance, points 13 to 15
20 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
8.5 to 10
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
83.2 to 89.5
Iron (Fe), % 65.1 to 72.5
2.0 to 4.0
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 10.5 to 13
0 to 1.0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.6
Residuals, % 0
0 to 0.5