MakeItFrom.com
Menu (ESC)

AISI 308 Stainless Steel vs. S20910 Stainless Steel

Both AISI 308 stainless steel and S20910 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 308 stainless steel and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
230 to 290
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
14 to 39
Fatigue Strength, MPa 210
310 to 460
Poisson's Ratio 0.28
0.28
Reduction in Area, % 57
56 to 62
Shear Modulus, GPa 78
79
Shear Strength, MPa 410
500 to 570
Tensile Strength: Ultimate (UTS), MPa 590
780 to 940
Tensile Strength: Yield (Proof), MPa 230
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 420
460
Maximum Temperature: Mechanical, °C 990
1080
Melting Completion (Liquidus), °C 1420
1420
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 16
16

Otherwise Unclassified Properties

Base Metal Price, % relative 17
22
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
4.8
Embodied Energy, MJ/kg 46
68
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 20
34
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 140
460 to 1640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
28 to 33
Strength to Weight: Bending, points 20
24 to 27
Thermal Diffusivity, mm2/s 4.1
3.6
Thermal Shock Resistance, points 13
17 to 21

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 19 to 21
20.5 to 23.5
Iron (Fe), % 64.1 to 71
52.1 to 62.1
Manganese (Mn), % 0 to 2.0
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 10 to 12
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3