MakeItFrom.com
Menu (ESC)

AISI 308L Stainless Steel vs. C22000 Bronze

AISI 308L stainless steel belongs to the iron alloys classification, while C22000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 308L stainless steel and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
1.9 to 45
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 380
200 to 300
Tensile Strength: Ultimate (UTS), MPa 580
260 to 520
Tensile Strength: Yield (Proof), MPa 230
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
190
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
45

Otherwise Unclassified Properties

Base Metal Price, % relative 16
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 45
42
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
3.7 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 140
21 to 1110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
8.1 to 17
Strength to Weight: Bending, points 20
10 to 17
Thermal Diffusivity, mm2/s 4.1
56
Thermal Shock Resistance, points 13
8.8 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 19.5 to 22
0
Copper (Cu), % 0
89 to 91
Iron (Fe), % 63.8 to 70.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.0 to 2.5
0
Nickel (Ni), % 9.0 to 11
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
8.7 to 11
Residuals, % 0
0 to 0.2