MakeItFrom.com
Menu (ESC)

AISI 309 Stainless Steel vs. Grade Ti-Pd8A Titanium

AISI 309 stainless steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 309 stainless steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 210
200
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 47
13
Fatigue Strength, MPa 250 to 280
260
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 600 to 710
500
Tensile Strength: Yield (Proof), MPa 260 to 350
430

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 980
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 15
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.6
49
Embodied Energy, MJ/kg 51
840
Embodied Water, L/kg 170
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 230
65
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 310
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 25
31
Strength to Weight: Bending, points 20 to 23
31
Thermal Diffusivity, mm2/s 4.3
8.6
Thermal Shock Resistance, points 14 to 16
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.2
0 to 0.1
Chromium (Cr), % 22 to 24
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58 to 66
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 12 to 15
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4