MakeItFrom.com
Menu (ESC)

AISI 310Cb Stainless Steel vs. AWS E70C-B2L

Both AISI 310Cb stainless steel and AWS E70C-B2L are iron alloys. They have 55% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 310Cb stainless steel and the bottom bar is AWS E70C-B2L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
21
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Tensile Strength: Ultimate (UTS), MPa 580
580
Tensile Strength: Yield (Proof), MPa 230
460

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
3.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.6
Embodied Energy, MJ/kg 69
22
Embodied Water, L/kg 190
54

Common Calculations

PREN (Pitting Resistance) 25
3.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 3.9
11
Thermal Shock Resistance, points 13
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 24 to 26
1.0 to 1.5
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 47.2 to 57
95.1 to 98
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 19 to 22
0 to 0.2
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.5
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5