MakeItFrom.com
Menu (ESC)

AISI 310Cb Stainless Steel vs. C63200 Bronze

AISI 310Cb stainless steel belongs to the iron alloys classification, while C63200 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 310Cb stainless steel and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
17 to 18
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 84
88
Shear Modulus, GPa 78
44
Shear Strength, MPa 390
390 to 440
Tensile Strength: Ultimate (UTS), MPa 580
640 to 710
Tensile Strength: Yield (Proof), MPa 230
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 1100
230
Melting Completion (Liquidus), °C 1410
1060
Melting Onset (Solidus), °C 1360
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 4.8
3.4
Embodied Energy, MJ/kg 69
55
Embodied Water, L/kg 190
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 140
400 to 510
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
21 to 24
Strength to Weight: Bending, points 20
20 to 21
Thermal Diffusivity, mm2/s 3.9
9.6
Thermal Shock Resistance, points 13
22 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
8.7 to 9.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
78.8 to 82.6
Iron (Fe), % 47.2 to 57
3.5 to 4.3
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
1.2 to 2.0
Nickel (Ni), % 19 to 22
4.0 to 4.8
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5