MakeItFrom.com
Menu (ESC)

AISI 310Cb Stainless Steel vs. C87610 Bronze

AISI 310Cb stainless steel belongs to the iron alloys classification, while C87610 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 310Cb stainless steel and the bottom bar is C87610 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Tensile Strength: Ultimate (UTS), MPa 580
350
Tensile Strength: Yield (Proof), MPa 230
140

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1410
970
Melting Onset (Solidus), °C 1360
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 4.8
2.6
Embodied Energy, MJ/kg 69
43
Embodied Water, L/kg 190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
62
Resilience: Unit (Modulus of Resilience), kJ/m3 140
88
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20
11
Strength to Weight: Bending, points 20
13
Thermal Diffusivity, mm2/s 3.9
8.1
Thermal Shock Resistance, points 13
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
90 to 94
Iron (Fe), % 47.2 to 57
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.25
Nickel (Ni), % 19 to 22
0
Niobium (Nb), % 0 to 1.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
3.0 to 5.0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.5