MakeItFrom.com
Menu (ESC)

AISI 310MoLN Stainless Steel vs. C85700 Brass

AISI 310MoLN stainless steel belongs to the iron alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 310MoLN stainless steel and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 610
310
Tensile Strength: Yield (Proof), MPa 290
110

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1420
940
Melting Onset (Solidus), °C 1380
910
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
84
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
25

Otherwise Unclassified Properties

Base Metal Price, % relative 28
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 5.0
2.8
Embodied Energy, MJ/kg 70
47
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
41
Resilience: Unit (Modulus of Resilience), kJ/m3 200
59
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
11
Strength to Weight: Bending, points 20
13
Thermal Diffusivity, mm2/s 3.7
27
Thermal Shock Resistance, points 14
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
58 to 64
Iron (Fe), % 45.2 to 53.8
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.6 to 2.6
0
Nickel (Ni), % 20.5 to 23.5
0 to 1.0
Nitrogen (N), % 0.090 to 0.15
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
32 to 40
Residuals, % 0
0 to 1.3