MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. 2618A Aluminum

AISI 310S stainless steel belongs to the iron alloys classification, while 2618A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is 2618A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 34 to 44
4.5
Fatigue Strength, MPa 250 to 280
120
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 420 to 470
260
Tensile Strength: Ultimate (UTS), MPa 600 to 710
440
Tensile Strength: Yield (Proof), MPa 270 to 350
410

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
230
Melting Completion (Liquidus), °C 1450
670
Melting Onset (Solidus), °C 1400
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 16
150
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 25
11
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 4.3
8.4
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 190
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
19
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 21 to 25
41
Strength to Weight: Bending, points 20 to 22
44
Thermal Diffusivity, mm2/s 4.1
59
Thermal Shock Resistance, points 14 to 16
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.5 to 95.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
1.8 to 2.7
Iron (Fe), % 48.3 to 57
0.9 to 1.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 2.0
0 to 0.25
Nickel (Ni), % 19 to 22
0.8 to 1.4
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0.15 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15