MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. C22600 Bronze

AISI 310S stainless steel belongs to the iron alloys classification, while C22600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is C22600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 44
2.5 to 33
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
42
Shear Strength, MPa 420 to 470
220 to 320
Tensile Strength: Ultimate (UTS), MPa 600 to 710
330 to 570
Tensile Strength: Yield (Proof), MPa 270 to 350
270 to 490

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1400
1000
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
170
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
42

Otherwise Unclassified Properties

Base Metal Price, % relative 25
28
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 4.3
2.6
Embodied Energy, MJ/kg 61
42
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
14 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
330 to 1070
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
11 to 18
Strength to Weight: Bending, points 20 to 22
12 to 18
Thermal Diffusivity, mm2/s 4.1
52
Thermal Shock Resistance, points 14 to 16
11 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 48.3 to 57
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
10.7 to 14
Residuals, % 0
0 to 0.2