MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. C38000 Brass

AISI 310S stainless steel belongs to the iron alloys classification, while C38000 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is C38000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34 to 44
17
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
39
Shear Strength, MPa 420 to 470
230
Tensile Strength: Ultimate (UTS), MPa 600 to 710
380
Tensile Strength: Yield (Proof), MPa 270 to 350
120

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
110
Melting Completion (Liquidus), °C 1450
800
Melting Onset (Solidus), °C 1400
760
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 25
22
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.3
2.7
Embodied Energy, MJ/kg 61
46
Embodied Water, L/kg 190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
50
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
74
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
13
Strength to Weight: Bending, points 20 to 22
14
Thermal Diffusivity, mm2/s 4.1
37
Thermal Shock Resistance, points 14 to 16
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 48.3 to 57
0 to 0.35
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
35.9 to 43.5
Residuals, % 0
0 to 0.5