MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. C60800 Bronze

AISI 310S stainless steel belongs to the iron alloys classification, while C60800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is C60800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34 to 44
55
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
46
Shear Strength, MPa 420 to 470
290
Tensile Strength: Ultimate (UTS), MPa 600 to 710
390
Tensile Strength: Yield (Proof), MPa 270 to 350
150

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1400
1050
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 16
80
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
18

Otherwise Unclassified Properties

Base Metal Price, % relative 25
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 4.3
2.9
Embodied Energy, MJ/kg 61
48
Embodied Water, L/kg 190
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200 to 220
170
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
94
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
13
Strength to Weight: Bending, points 20 to 22
14
Thermal Diffusivity, mm2/s 4.1
23
Thermal Shock Resistance, points 14 to 16
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.0 to 6.5
Arsenic (As), % 0
0.020 to 0.35
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
92.5 to 95
Iron (Fe), % 48.3 to 57
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5