MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. C71640 Copper-nickel

AISI 310S stainless steel belongs to the iron alloys classification, while C71640 copper-nickel belongs to the copper alloys. They have a modest 24% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is C71640 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
52
Tensile Strength: Ultimate (UTS), MPa 600 to 710
490 to 630
Tensile Strength: Yield (Proof), MPa 270 to 350
190 to 460

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 1100
260
Melting Completion (Liquidus), °C 1450
1180
Melting Onset (Solidus), °C 1400
1120
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 16
29
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 25
40
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.3
5.0
Embodied Energy, MJ/kg 61
73
Embodied Water, L/kg 190
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 310
130 to 750
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 25
15 to 20
Strength to Weight: Bending, points 20 to 22
16 to 18
Thermal Diffusivity, mm2/s 4.1
8.2
Thermal Shock Resistance, points 14 to 16
16 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
61.7 to 67.8
Iron (Fe), % 48.3 to 57
1.7 to 2.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
1.5 to 2.5
Nickel (Ni), % 19 to 22
29 to 32
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5