MakeItFrom.com
Menu (ESC)

AISI 310S Stainless Steel vs. C72500 Copper-nickel

AISI 310S stainless steel belongs to the iron alloys classification, while C72500 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AISI 310S stainless steel and the bottom bar is C72500 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
45
Tensile Strength: Ultimate (UTS), MPa 600 to 710
420 to 780

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1450
1130
Melting Onset (Solidus), °C 1400
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
54
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 25
35
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.3
3.6
Embodied Energy, MJ/kg 61
55
Embodied Water, L/kg 190
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
13 to 24
Strength to Weight: Bending, points 20 to 22
14 to 21
Thermal Diffusivity, mm2/s 4.1
16
Thermal Shock Resistance, points 14 to 16
14 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
85.2 to 89.7
Iron (Fe), % 48.3 to 57
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.2
Nickel (Ni), % 19 to 22
8.5 to 10.5
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.8 to 2.8
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.2