MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. 6005A Aluminum

AISI 316 stainless steel belongs to the iron alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 8.0 to 55
8.6 to 17
Fatigue Strength, MPa 210 to 430
55 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 350 to 690
120 to 180
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
190 to 300
Tensile Strength: Yield (Proof), MPa 230 to 850
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 590
170
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
180 to 190
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.9
8.3
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
76 to 530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18 to 41
20 to 30
Strength to Weight: Bending, points 18 to 31
27 to 36
Thermal Diffusivity, mm2/s 4.1
72 to 79
Thermal Shock Resistance, points 11 to 26
8.6 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 62 to 72
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15