MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. C61000 Bronze

AISI 316 stainless steel belongs to the iron alloys classification, while C61000 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.0 to 55
29 to 50
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 80
60 to 85
Shear Modulus, GPa 78
42
Shear Strength, MPa 350 to 690
280 to 300
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
390 to 460
Tensile Strength: Yield (Proof), MPa 230 to 850
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 590
210
Melting Completion (Liquidus), °C 1400
1040
Melting Onset (Solidus), °C 1380
990
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 15
69
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
16

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 3.9
3.0
Embodied Energy, MJ/kg 53
49
Embodied Water, L/kg 150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
100 to 160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18 to 41
13 to 15
Strength to Weight: Bending, points 18 to 31
14 to 16
Thermal Diffusivity, mm2/s 4.1
19
Thermal Shock Resistance, points 11 to 26
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
6.0 to 8.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
90.2 to 94
Iron (Fe), % 62 to 72
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5