MakeItFrom.com
Menu (ESC)

AISI 316 Stainless Steel vs. S30415 Stainless Steel

Both AISI 316 stainless steel and S30415 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 316 stainless steel and the bottom bar is S30415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 360
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 8.0 to 55
45
Fatigue Strength, MPa 210 to 430
300
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 80
84
Shear Modulus, GPa 78
77
Shear Strength, MPa 350 to 690
470
Tensile Strength: Ultimate (UTS), MPa 520 to 1180
670
Tensile Strength: Yield (Proof), MPa 230 to 850
330

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
420
Maximum Temperature: Mechanical, °C 590
940
Melting Completion (Liquidus), °C 1400
1410
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.9
3.1
Embodied Energy, MJ/kg 53
43
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 26
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 260
250
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1820
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 41
24
Strength to Weight: Bending, points 18 to 31
22
Thermal Diffusivity, mm2/s 4.1
5.6
Thermal Shock Resistance, points 11 to 26
15

Alloy Composition

Carbon (C), % 0 to 0.080
0.040 to 0.060
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 16 to 18
18 to 19
Iron (Fe), % 62 to 72
67.8 to 71.8
Manganese (Mn), % 0 to 2.0
0 to 0.8
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
9.0 to 10
Nitrogen (N), % 0 to 0.1
0.12 to 0.18
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
1.0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.030