MakeItFrom.com
Menu (ESC)

AISI 316H Stainless Steel vs. Grade CW6MC Nickel

AISI 316H stainless steel belongs to the iron alloys classification, while grade CW6MC nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 316H stainless steel and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
28
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
79
Tensile Strength: Ultimate (UTS), MPa 580
540
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 290
330
Maximum Temperature: Mechanical, °C 940
980
Melting Completion (Liquidus), °C 1450
1480
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 16
11
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
80
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 3.9
14
Embodied Energy, MJ/kg 53
200
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
130
Resilience: Unit (Modulus of Resilience), kJ/m3 130
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 4.2
2.8
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.060
Chromium (Cr), % 16 to 18
20 to 23
Iron (Fe), % 62.1 to 72
0 to 5.0
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
8.0 to 10
Nickel (Ni), % 10 to 14
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030