MakeItFrom.com
Menu (ESC)

AISI 316N Stainless Steel vs. C86300 Bronze

AISI 316N stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 316N stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 350
250
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.0 to 39
14
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 620 to 1160
850
Tensile Strength: Yield (Proof), MPa 270 to 870
480

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 940
160
Melting Completion (Liquidus), °C 1440
920
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
3.0
Embodied Energy, MJ/kg 53
51
Embodied Water, L/kg 150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 230
100
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1880
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22 to 41
30
Strength to Weight: Bending, points 20 to 31
25
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 14 to 26
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 61.9 to 71.9
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0 to 1.0
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0