MakeItFrom.com
Menu (ESC)

AISI 316Ti Stainless Steel vs. EN 1.0033 Steel

Both AISI 316Ti stainless steel and EN 1.0033 steel are iron alloys. They have 67% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 316Ti stainless steel and the bottom bar is EN 1.0033 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
86 to 96
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 41
17 to 32
Fatigue Strength, MPa 200
120 to 140
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 82
73
Shear Strength, MPa 400
200
Tensile Strength: Ultimate (UTS), MPa 580
300 to 330
Tensile Strength: Yield (Proof), MPa 230
150 to 200

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
53
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.0
1.4
Embodied Energy, MJ/kg 55
18
Embodied Water, L/kg 150
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
48 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 140
63 to 100
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
10 to 12
Strength to Weight: Bending, points 20
13 to 14
Thermal Diffusivity, mm2/s 4.0
14
Thermal Shock Resistance, points 13
9.4 to 10

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.11
Chromium (Cr), % 16 to 18
0
Iron (Fe), % 61.3 to 72
98.8 to 100
Manganese (Mn), % 0 to 2.0
0 to 0.7
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.045
Titanium (Ti), % 0 to 0.7
0