MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. CC380H Copper-nickel

AISI 321 stainless steel belongs to the iron alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
80
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34 to 50
26
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
47
Tensile Strength: Ultimate (UTS), MPa 590 to 690
310
Tensile Strength: Yield (Proof), MPa 220 to 350
120

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 870
220
Melting Completion (Liquidus), °C 1430
1130
Melting Onset (Solidus), °C 1400
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
46
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 16
36
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.2
3.8
Embodied Energy, MJ/kg 45
58
Embodied Water, L/kg 140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
65
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
59
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 25
9.8
Strength to Weight: Bending, points 20 to 22
12
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 13 to 15
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
84.5 to 89
Iron (Fe), % 65.3 to 74
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 2.0
1.0 to 1.5
Nickel (Ni), % 9.0 to 12
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.7
0
Zinc (Zn), % 0
0 to 0.5