MakeItFrom.com
Menu (ESC)

AISI 321 Stainless Steel vs. Grade 6 Titanium

AISI 321 stainless steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 321 stainless steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34 to 50
11
Fatigue Strength, MPa 220 to 270
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Shear Strength, MPa 420 to 460
530
Tensile Strength: Ultimate (UTS), MPa 590 to 690
890
Tensile Strength: Yield (Proof), MPa 220 to 350
840

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 870
310
Melting Completion (Liquidus), °C 1430
1580
Melting Onset (Solidus), °C 1400
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 16
7.8
Thermal Expansion, µm/m-K 17
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.2
30
Embodied Energy, MJ/kg 45
480
Embodied Water, L/kg 140
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 230
92
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 310
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 25
55
Strength to Weight: Bending, points 20 to 22
46
Thermal Diffusivity, mm2/s 4.1
3.2
Thermal Shock Resistance, points 13 to 15
65

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 19
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 65.3 to 74
0 to 0.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 12
0
Nitrogen (N), % 0 to 0.1
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0 to 0.7
89.8 to 94
Residuals, % 0
0 to 0.4